
Boolean Algebra

 Boolean algebra is used to analyze and simplify the digital (logic) circuits. It uses only the
binary numbers i.e. 0 and 1. It is also called as Binary Algebra or logical Algebra. Boolean
algebra was invented by George Boole in 1854.

Rule in Boolean Algebra-

Following are the important rules used in Boolean algebra.

 Variable used can have only two values. Binary 1 for HIGH and Binary 0 for LOW.

 Complement of a variable is represented by an over bar (-). Thus, complement of

variable B is represented as . Thus if B = 0 then = 1 and B = 1 then = 0.

 OR ing of the variables is represented by a plus (+) sign between them. For example
ORing of A, B, C is represented as A + B + C.

 Logical ANDing of the two or more variable is represented by writing a dot between
them such as A.B.C. Sometime the dot may be omitted like ABC.

Boolean Laws

There are six types of Boolean Laws.

Commutative law

Any binary operation which satisfies the following expression is referred to as commutative
operation.

Commutative law states that changing the sequence of the variables does not have any effect
on the output of a logic circuit.

Associative law

This law states that the order in which the logic operations are performed is irrelevant as their
effect is the same.

Distributive law

Distributive law states the following condition.

AND law

These laws use the AND operation. Therefore they are called as AND laws.

Page 1 of 11

OR law

These laws use the OR operation. Therefore they are called as OR laws.

INVERSION law

This law uses the NOT operation. The inversion law states that double inversion of a variable
results in the original variable itself.

De Morgan's Theorems

De Morgan has suggested two theorems which are extremely useful in Boolean
Algebra. The two theorems are discussed below.

Theorem 1

 The left hand side (LHS) of this theorem represents a NAND gate with inputs A and
B, whereas the right hand side (RHS) of the theorem represents an OR gate with
inverted inputs.

 This OR gate is called as Bubbles OR

Page 2 of 11

Table showing verification of the De Morgan's first theorem −

Theorem 2

 The LHS of this theorem represents a NOR gate with inputs A and B, whereas the
RHS represents an AND gate with inverted inputs.

 This AND gate is called as Bubbled AND.

Page 3 of 11

Table showing verification of the De Morgan's second theorem −

Implementation of Boolean Functions using Logic Gates
 Boolean function can be represented easily in SOP (sum of products) form and POS (product of
sums) form.

Any Boolean function can be represented by using a number of logic gates by interconnecting
them. Logic gates implementation or logic representation of Boolean functions is very simple
and easy form.

The implementation of Boolean functions by using logic gates involves in connecting one logic
gate’s output to another gate’s input and involves in using AND, OR, NAND and NOR gates.

Table of Contents
 Logic gates

o AND Gate
o OR Gate
o NOT Gate

Page 4 of 11

https://www.electronicshub.org/implementation-of-boolean-functions-using-logic-gates/#Logic_gates
https://www.electronicshub.org/implementation-of-boolean-functions-using-logic-gates/#NOT_Gate
https://www.electronicshub.org/implementation-of-boolean-functions-using-logic-gates/#OR_Gate
https://www.electronicshub.org/implementation-of-boolean-functions-using-logic-gates/#AND_Gate

 SOP Boolean Function Implementation using logic gates
 Logic gate implementation
o Implementation for 2 input variables
o Implementation for 3 input variables

 POS Boolean Function Implementation using logic gates
Logic gate Implementation
o Implementation for 2 input variables
o Implementation for 3 input variables

 Implementation of Boolean functions using Universal logic gates
o Implementation of Boolean functions using NAND gates
o Implementation of Boolean functions using NOR gates

Logic gates

Logic gates are the basic building blocks of digital electronic circuits. A logic gate is a piece of an
electronic circuit, that can be used to implement Boolean expressions.Laws and theorems of
Boolean logic are used to manipulate the Boolean expressions and logic gates are used to
implement these Boolean expressions in digital electronics. AND gate, OR gate and NOT gate
are the three basic logic gates used in digital electronics.

AND Gate

Logic AND gate is a basic logic gate of which the output is equal to the product of its inputs. This
gate multiplies both of its inputs so this gate is used to find the multiplication of inputs in binary
algebra.

The output of an AND gate is HIGH only if both the inputs of the gate are HIGH. The output for
all the other cases of the inputs is LOW. The logic symbol and the truth table of an AND gate is
shown below.

Page 5 of 11

https://www.electronicshub.org/implementation-of-boolean-functions-using-logic-gates/#SOP_Boolean_Function_Implementation_using_logic_gates
https://www.electronicshub.org/implementation-of-boolean-functions-using-logic-gates/#POS_Boolean_Function_Implementation_using_logic_gates
https://www.electronicshub.org/implementation-of-boolean-functions-using-logic-gates/#Implementation_of_Boolean_functions_using_NOR_gates
https://www.electronicshub.org/implementation-of-boolean-functions-using-logic-gates/#Implementation_of_Boolean_functions_using_NAND_gates
https://www.electronicshub.org/implementation-of-boolean-functions-using-logic-gates/#Implementation_of_Boolean_functions_using_Universal_logic_gates
https://www.electronicshub.org/implementation-of-boolean-functions-using-logic-gates/#Implementation_for_3_input_variables-2
https://www.electronicshub.org/implementation-of-boolean-functions-using-logic-gates/#Implementation_for_2_input_variables-2
https://www.electronicshub.org/implementation-of-boolean-functions-using-logic-gates/#Logic_gate_Implementation
https://www.electronicshub.org/implementation-of-boolean-functions-using-logic-gates/#Implementation_for_3_input_variables
https://www.electronicshub.org/implementation-of-boolean-functions-using-logic-gates/#Implementation_for_2_input_variables
https://www.electronicshub.org/implementation-of-boolean-functions-using-logic-gates/#Logic_gate_implementation

OR Gate

The output of the logic OR gate is equal to the sum of its inputs. This gate adds both of its
inputs so this gate is used to find the summation or the addition of inputs in binary algebra. The
output of an OR gate is HIGH if either of the inputs are HIGH. The output is LOW only when all
the inputs are LOW. The logic symbol and the truth table of an OR gate is shown below.

NOT Gate

Logic NOT gate is a basic logic gate of which the output is equal to the inverse of its input. This
gate produces the complement of the input. So this gate is used to represent the complement
of variables in binary algebra. If the input is HIGH, the output is LOW and if the input is LOW,
the output is HIGH. The logic symbol and the truth table of a NOT gate is shown below.

Page 6 of 11

SOP Boolean Function Implementation using logic gates

 The sum of product or SOP form is represented by using basic logic gates like AND gate and OR
gate. The SOP form implementation will have the AND gate at its input side and as the output
of the function is the sum of all product terms, it has an OR gate at its output side. This is
important to remember that we use NOT gate to represent the inverse or complement of the
variables.

Implementation for 2 input variables

Implement the Boolean function by using basic logic gates. F = A B + A B’

In the given SOP function, we have one compliment term, AB’. So to represent the compliment
input, we are using the NOT gates at the input side. And to represent the product term, we use
AND gates. See the below given logic diagram for representation of the Boolean function.

Implementation for 3 input variables

Implement the Boolean function by using basic logic gates.

F = A B C + A B C’+ A’ B C’

In the given function, we have two compliment terms, A’B C’ and ABC’. So to represent the
compliment input, we are using the NOT gates at the input side. And to represent the product

Page 7 of 11

term, we use AND gates. See the below given logic diagram for representation of the Boolean
function.

POS Boolean Function Implementation using logic gates

The product of sums or POS form can be represented by using basic logic gates like AND gate
and OR gates. The POS form implementation will have the OR gate at its input side and as the
output of the function is product of all sum terms, it has AND gate at its output side. In POS
form implementation, we use NOT gate to represent the inverse or complement of the
variables.

Ex 1:

Implementation for 2 input variables

Implement the Boolean function by using basic logic gates. F = (A + B) * (A + B’)

In the given function, we have a complement term, (A + B) and (A + B’). So to represent the
compliment input, we are using the NOT gates at the input side. And to represent the sum
term, we use OR gates. See the below given logic diagram for representation of the Boolean
function.

Page 8 of 11

Implementation for 3 input variables

Implement the Boolean function by using basic logic gates.

F = (A + B + C) * (A’ + B’ +C) * (A + B’ + C)

In the given Boolean function, we have two compliment terms, (A’ + B’ +C) and (A + B’ + C). So
to represent the compliment input, we are using the NOT gates at the input side. And to
represent the sum term, we use OR gates. See the below given logic diagram for representation
of the Boolean function.

Page 9 of 11

K-Map Method

simplified the Boolean functions using Boolean postulates and theorems. It is a time consuming
process and we have to re-write the simplified expressions after each step.To overcome this
difficulty, Karnaugh introduced a method for simplification of Boolean functions in an easy
way. This method is known as Karnaugh map method or K-map method. It is a graphical
method, which consists of 2n cells for ‘n’ variables. The adjacent cells are differed only in single
bit position.

K-Maps for 2 to 4 Variables

K-Map method is most suitable for minimizing Boolean functions of 2 variables to 5 variables.
Now, let us discuss about the K-Maps for 2 to 5 variables one by one.

2 Variable K-Map

The number of cells in 2 variable K-map is four, since the number of variables is two. The
following figure shows 2 variable K-Map.

 There is only one possibility of grouping 4 adjacent min terms.

 The possible combinations of grouping 2 adjacent min terms are {(m0, m1), (m2, m3), (m0, m2)
and (m1, m3)}.

3 Variable K-Map

The number of cells in 3 variable K-map is eight, since the number of variables is three. The
following figure shows 3 variable K-Map.

Page 10 of 11

 There is only one possibility of grouping 8 adjacent min terms.

 The possible combinations of grouping 4 adjacent min terms are {(m0, m1, m3, m2), (m4, m5,
m7, m6), (m0, m1, m4, m5), (m1, m3, m5, m7), (m3, m2, m7, m6) and (m2, m0, m6, m4)}.

 The possible combinations of grouping 2 adjacent min terms are {(m0, m1), (m1, m3), (m3, m2),
(m2, m0), (m4, m5), (m5, m7), (m7, m6), (m6, m4), (m0, m4), (m1, m5), (m3, m7) and (m2, m6)}.

 If x=0, then 3 variable K-map becomes 2 variable K-map.

4 Variable K-Map

The number of cells in 4 variable K-map is sixteen, since the number of variables is four. The
following figure shows 4 variable K-Map.

 There is only one possibility of grouping 16 adjacent min terms.

 Let R1, R2, R3 and R4 represents the min terms of first row, second row, third row and fourth
row respectively. Similarly, C1, C2, C3 and C4 represents the min terms of first column,
second column, third column and fourth column respectively. The possible combinations of
grouping 8 adjacent min terms are {(R1, R2), (R2, R3), (R3, R4), (R4, R1), (C1, C2), (C2, C3), (C3, C4),
(C4, C1)}.

 If w=0, then 4 variable K-map becomes 3 variable K-map.

Page 11 of 11

